Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 861
Filtrar
1.
CRISPR J ; 7(2): 111-119, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38635329

RESUMO

Integration of a point mutation to correct or edit a gene requires the repair of the CRISPR-Cas9-induced double-strand break by homology-directed repair (HDR). This repair pathway is more active in late S and G2 phases of the cell cycle, whereas the competing pathway of nonhomologous end-joining (NHEJ) operates throughout the cell cycle. Accordingly, modulation of the cell cycle by chemical perturbation or simply by the timing of gene editing to shift the editing toward the S/G2 phase has been shown to increase HDR rates. Using a traffic light reporter in mouse embryonic stem cells and a fluorescence conversion reporter in human-induced pluripotent stem cells, we confirm that a transient cold shock leads to an increase in the rate of HDR, with a corresponding decrease in the rate of NHEJ repair. We then investigated whether a similar cold shock could lead to an increase in the rate of HDR in the mouse embryo. By analyzing the efficiency of gene editing using single nucleotide polymorphism changes and loxP insertion at three different genetic loci, we found that a transient reduction in temperature after zygote electroporation of CRISPR-Cas9 ribonucleoprotein with a single-stranded oligodeoxynucleotide repair template did indeed increase knockin efficiency, without affecting embryonic development. The efficiency of gene editing with and without the cold shock was first assessed by genotyping blastocysts. As a proof of concept, we then confirmed that the modified embryo culture conditions were compatible with live births by targeting the coat color gene tyrosinase and observing the repair of the albino mutation. Taken together, our data suggest that a transient cold shock could offer a simple and robust way to improve knockin outcomes in both stem cells and zygotes.


Assuntos
Edição de Genes , Hipotermia , Animais , Humanos , Camundongos , Sistemas CRISPR-Cas/genética , Zigoto/metabolismo , Hipotermia/metabolismo , Reparo de DNA por Recombinação/genética
2.
Cell ; 187(8): 1874-1888.e14, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38518773

RESUMO

Infections of the lung cause observable sickness thought to be secondary to inflammation. Signs of sickness are crucial to alert others via behavioral-immune responses to limit contact with contagious individuals. Gram-negative bacteria produce exopolysaccharide (EPS) that provides microbial protection; however, the impact of EPS on sickness remains uncertain. Using genome-engineered Pseudomonas aeruginosa (P. aeruginosa) strains, we compared EPS-producers versus non-producers and a virulent Escherichia coli (E. coli) lung infection model in male and female mice. EPS-negative P. aeruginosa and virulent E. coli infection caused severe sickness, behavioral alterations, inflammation, and hypothermia mediated by TLR4 detection of the exposed lipopolysaccharide (LPS) in lung TRPV1+ sensory neurons. However, inflammation did not account for sickness. Stimulation of lung nociceptors induced acute stress responses in the paraventricular hypothalamic nuclei by activating corticotropin-releasing hormone neurons responsible for sickness behavior and hypothermia. Thus, EPS-producing biofilm pathogens evade initiating a lung-brain sensory neuronal response that results in sickness.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Pulmão , Polissacarídeos Bacterianos , Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Feminino , Masculino , Camundongos , Biofilmes , Escherichia coli/fisiologia , Hipotermia/metabolismo , Hipotermia/patologia , Inflamação/metabolismo , Inflamação/patologia , Pulmão/microbiologia , Pulmão/patologia , Pneumonia/microbiologia , Pneumonia/patologia , Pseudomonas aeruginosa/fisiologia , Células Receptoras Sensoriais , Polissacarídeos Bacterianos/metabolismo , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Nociceptores/metabolismo
3.
Int J Mol Sci ; 25(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474263

RESUMO

Dexmedetomidine is widely used to induce sedation in the perioperative period. This study examined the effect of hypothermia (33 and 25 °C) on dexmedetomidine-induced contraction in an endothelium-intact aorta with or without the nitric oxide synthase inhibitor NW-nitro-L-arginine methyl ester (L-NAME). In addition, the effect of hypothermia on the contraction induced by dexmedetomidine in an endothelium-denuded aorta with or without a calcium-free Krebs solution was examined. The effects of hypothermia on the protein kinase C (PKC), myosin light chain (MLC20) phosphorylation, and Rho-kinase membrane translocation induced by dexmedetomidine were examined. Hypothermia inhibited dexmedetomidine-induced contraction in the endothelium-intact aorta with L-NAME or endothelium-denuded aorta. Hypothermia had almost no effect on the dexmedetomidine-induced contraction in the endothelium-denuded aorta with the calcium-free Krebs solution; however, the subsequent contraction induced by the addition of calcium was inhibited by hypothermia. Conversely, the transition from profound hypothermia back to normothermia reversed the hypothermia-induced inhibition of subsequent calcium-induced contractions. Hypothermia inhibited any contraction induced by KCl, PDBu, and NaF, as well as PKC and MLC20 phosphorylation and Rho-kinase membrane translocation induced by dexmedetomidine. These results suggest that hypothermia inhibits dexmedetomidine-induced contraction, which is mediated mainly by the impediment of calcium influx and partially by the attenuation of pathways involving PKC and Rho-kinase activation.


Assuntos
Dexmedetomidina , Hipotermia , Ratos , Animais , Dexmedetomidina/farmacologia , Quinases Associadas a rho/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Cálcio/metabolismo , Hipotermia/metabolismo , Proteína Quinase C/metabolismo , Endotélio Vascular/metabolismo , Contração Muscular
4.
Biochem Biophys Res Commun ; 706: 149767, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38484570

RESUMO

Microglial activation is a critical factor in the pathogenesis and progression of neuroinflammatory diseases. Mild hypothermia, known for its neuroprotective properties, has been shown to alleviate microglial activation. In this study, we explore the differentially expressed (DE) mRNAs and long non-coding RNAs (lncRNAs) in BV-2 microglial cells under different conditions: normal temperature (CN), mild hypothermia (YT), normal temperature with lipopolysaccharide (LPS), and mild hypothermia with LPS (LPS + YT). Venn analysis revealed 119 DE mRNAs that were down-regulated in the LPS + YT vs LPS comparison but up-regulated in the CN vs LPS comparison, primarily enriched in Gene Ontology terms related to immune and inflammatory responses. Furthermore, through Venn analysis of YT vs CN and LPS + YT vs LPS comparisons, we identified 178 DE mRNAs and 432 DE lncRNAs. Among these transcripts, we validated the expression of Tent5c at the protein and mRNA levels. Additionally, siRNA-knockdown of Tent5c attenuated the expression of pro-inflammatory genes (TNF-α, IL-1ß, Agrn, and Fpr2), cellular morphological changes, NLRP3 and p-P65 protein levels, immunofluorescence staining of p-P65 and number of cells with ASC-speck induced by LPS. Furthermore, Tent5c overexpression further potentiated the aforementioned indicators in the context of mild hypothermia with LPS treatment. Collectively, our findings highlight the significant role of Tent5c down-regulation in mediating the anti-inflammatory effects of mild hypothermia.


Assuntos
Hipotermia , RNA Longo não Codificante , Humanos , Lipopolissacarídeos/farmacologia , Regulação para Baixo , Microglia/metabolismo , Hipotermia/metabolismo , RNA Longo não Codificante/metabolismo
5.
Sci Rep ; 14(1): 3187, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326353

RESUMO

Global cerebral ischemia (GCI) caused by clinical conditions such as cardiac arrest leads to delayed neuronal death in the hippocampus, resulting in physical and mental disability. However, the mechanism of delayed neuronal death following GCI remains unclear. To elucidate the mechanism, we performed a metabolome analysis using a mouse model in which hypothermia (HT) during GCI, which was induced by the transient occlusion of the bilateral common carotid arteries, markedly suppressed the development of delayed neuronal death in the hippocampus after reperfusion. Fifteen metabolites whose levels were significantly changed by GCI and 12 metabolites whose levels were significantly changed by HT were identified. Furthermore, the metabolites common for both changes were narrowed down to two, adenosine monophosphate (AMP) and xanthosine monophosphate (XMP). The levels of both AMP and XMP were found to be decreased by GCI, but increased by HT, thereby preventing their decrease. In contrast, the levels of adenosine, inosine, hypoxanthine, xanthine, and guanosine, the downstream metabolites of AMP and XMP, were increased by GCI, but were not affected by HT. Our results may provide a clue to understanding the mechanism by which HT during GCI suppresses the development of delayed neuronal death in the hippocampus.


Assuntos
Isquemia Encefálica , Hipotermia , Ribonucleotídeos , Humanos , Hipotermia/metabolismo , Isquemia Encefálica/metabolismo , Xantina/metabolismo , Infarto Cerebral/metabolismo , Hipocampo/metabolismo , Monofosfato de Adenosina/metabolismo
6.
Brain Res ; 1831: 148826, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38403036

RESUMO

Mitochondrial transfer occurs between cells, and it is important for damaged cells to receive healthy mitochondria to maintain their normal function and protect against cell death. Accumulating evidence suggests that the functional mitochondria of astrocytes are released and transferred to oxygen-glucose deprivation/reoxygenation (OGD/R)-injured neurons. Mild hypothermia (33 °C) is capable of promoting this process, which partially restores the function of damaged neurons. However, the pathways and mechanisms by which mild hypothermia facilitates mitochondrial transfer remain unclear. We are committed to studying the role of mild hypothermia in neuroprotection to provide reliable evidences and insights for the clinical application of mild hypothermia in brain protection. Tunneling nanotubes (TNTs) are considered to be one of the routes through which mitochondria are transferred between cells. In this study, an OGD/R-injured neuronal model was successfully established, and TNTs, mitochondria, neurons and astrocytes were double labeled using immunofluorescent probes. Our results showed that TNTs were present and involved in the transfer of mitochondria between cells in the mixed-culture system of neurons and astrocytes. When neurons were subjected to OGD/R exposure, TNT formation and mitochondrial transportation from astrocytes to injured neurons were facilitated. Further analysis revealed that mild hypothermia increased the quantity of astrocytic mitochondria transferred into damaged neurons through TNTs, raised the mitochondrial membrane potential (MMP), and decreased the neuronal damage and death during OGD/R. Altogether, our data indicate that TNTs play an important role in the endogenous neuroprotection of astrocytic mitochondrial transfer. Furthermore, mild hypothermia enhances astrocytic mitochondrial transfer into OGD/R-injured neurons via TNTs, thereby promoting neuroprotection and neuronal recovery.


Assuntos
Estruturas da Membrana Celular , Hipotermia , Nanotubos , Oxigênio , Humanos , Oxigênio/metabolismo , Glucose/metabolismo , Astrócitos/metabolismo , Hipotermia/metabolismo , Células Cultivadas , Neurônios/metabolismo , Mitocôndrias/metabolismo
7.
J Korean Med Sci ; 39(7): e79, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38412613

RESUMO

BACKGROUND: This study evaluated the difference in brain metabolite profiles between normothermia and hypothermia reaching 25°C in humans in vivo. METHODS: Thirteen patients who underwent thoracic aorta surgery under moderate hypothermia were prospectively enrolled. Plasma samples were collected simultaneously from the arteries and veins to estimate metabolite uptake or release. Targeted metabolomics based on liquid chromatographic mass spectrometry and direct flow injection were performed, and changes in the profiles of respective metabolites from normothermia to hypothermia were compared. The ratios of metabolite concentrations in venous blood samples to those in arterial blood samples (V/A ratios) were calculated, and log2 transformation of the ratios [log2(V/A)] was performed for comparison between the temperature groups. RESULTS: Targeted metabolomics were performed for 140 metabolites, including 20 amino acids, 13 biogenic amines, 10 acylcarnitines, 82 glycerophospholipids, 14 sphingomyelins, and 1 hexose. Of the 140 metabolites analyzed, 137 metabolites were released from the brain in normothermia, and the release of 132 of these 137 metabolites was decreased in hypothermia. Two metabolites (dopamine and hexose) showed constant release from the brain in hypothermia, and 3 metabolites (2 glycophospholipids and 1 sphingomyelin) showed conversion from release to uptake in hypothermia. Glutamic acid demonstrated a distinct brain metabolism in that it was taken up by the brain in normothermia, and the uptake was increased in hypothermia. CONCLUSION: Targeted metabolomics demonstrated various degrees of changes in the release of metabolites by the hypothermic brain. The release of most metabolites was decreased in hypothermia, whereas glutamic acid showed a distinct brain metabolism.


Assuntos
Hipotermia Induzida , Hipotermia , Humanos , Hipotermia/metabolismo , Encéfalo/metabolismo , Aminoácidos , Hipotermia Induzida/métodos , Hexoses/metabolismo , Glutamatos/metabolismo
8.
Cardiovasc Toxicol ; 24(2): 85-101, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38356081

RESUMO

Cold stress prompts an increased prevalence of cardiovascular morbidity yet the underneath machinery remains unclear. Oxidative stress and autophagy appear to contribute to cold stress-induced cardiac anomalies. Our present study evaluated the effect of heavy metal antioxidant metallothionein on cold stress (4 °C)-induced in cardiac remodeling and contractile anomalies and cell signaling involved including regulation of autophagy and mitophagy. Cold stress (3 weeks) prompted interstitial fibrosis, mitochondrial damage (mitochondrial membrane potential and TEM ultrastructure), oxidative stress (glutathione, reactive oxygen species and superoxide), lipid peroxidation, protein injury, elevated left ventricular (LV) end systolic and diastolic diameters, decreased fractional shortening, ejection fraction, Langendorff heart function, cardiomyocyte shortening, maximal velocities of shortening/relengthening, and electrically stimulated intracellular Ca2+ rise along with elongated relaxation duration and intracellular Ca2+ clearance, the responses of which were overtly attenuated or mitigated by metallothionein. Levels of apoptosis, cell death (Bax and loss of Bcl2, IL-18), and autophagy (LC3BII-to-LC3BI ratio, Atg7 and Beclin-1) were overtly upregulated with comparable p62 under cold stress. Cold stress also evoked elevated mitophagy (decreased TOM20, increased Parkin and FUNDC1 with unaltered BNIP3). Cold stress overtly dampened phosphorylation of autophagy/mitophagy inhibitory molecules Akt and mTOR, stimulated and suppressed phosphorylation of ULK1 and eNOS, respectively, in the absence of altered pan protein levels. Cold stress-evoked responses in cell death, autophagy, mitophagy and their regulatory domains were overtly attenuated or ablated by metallothionein. Suppression of autophagy and mitophagy with 3-methyladenine, bafilomycin A1, cyclosporine A, and liensinine rescued hypothermia-instigated cardiomyocyte LC3B puncta formation and mechanical anomalies. Our findings support a protective nature for metallothionein in deep hypothermia-evoked cardiac abnormalities associated with regulation of autophagy and mitophagy.


Assuntos
Hipotermia , Metais Pesados , Humanos , Mitofagia , Resposta ao Choque Frio , Hipotermia/metabolismo , Metalotioneína , Contração Miocárdica , Miócitos Cardíacos , Autofagia , Metais Pesados/metabolismo , Metais Pesados/farmacologia
9.
Neurochem Res ; 49(3): 800-813, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38112974

RESUMO

Therapeutic hypothermia (TH) provides neuroprotection. However, the cellular mechanisms underlying the neuroprotective effects of TH are not fully elucidated. Regulation of microglial activation has the potential to treat a variety of nervous system diseases. Transient receptor potential vanilloid 4 (TRPV4), a nonselective cation channel, is activated by temperature stimulus at 27-35 °C. Although it is speculated that TRPV4 is associated with the neuroprotective mechanisms of TH, the role of TRPV4 in the neuroprotective effects of TH is not well understood. In the present study, we investigated whether hypothermia attenuates microglial activation via TRPV4 channels. Cultured microglia were incubated under normothermic (37 °C) or hypothermic (33.5 °C) conditions following lipopolysaccharide (LPS) stimulation. Hypothermic conditions suppressed the expression of pro-inflammatory cytokines, inducible nitric oxide synthase, and the number of phagocytic microglia. AMP-activated protein kinase (AMPK)-NF-κB signaling was inhibited under hypothermic conditions. Furthermore, hypothermia reduced neuronal damage induced by LPS-treated microglial cells. Treatment with TRPV4 antagonist in normothermic culture replicated the suppressive effects of hypothermia on microglial activation and microglia-induced neuronal damage. In contrast, treatment with a TRPV4 agonist in hypothermic culture reversed the suppressive effect of hypothermia. These findings suggest that TH suppresses microglial activation and microglia-induced neuronal damage via the TRPV4-AMPK-NF-κB pathway. Although more validation is needed to consider differences according to age, sex, and specific central nervous system regions, our findings may offer a novel therapeutic approach to complement TH.


Assuntos
Antineoplásicos , Hipotermia , Fármacos Neuroprotetores , Humanos , NF-kappa B/metabolismo , Microglia/metabolismo , Canais de Cátion TRPV/metabolismo , Fármacos Neuroprotetores/farmacologia , Hipotermia/metabolismo , Lipopolissacarídeos/toxicidade , Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos/farmacologia , Óxido Nítrico/metabolismo
10.
Front Immunol ; 14: 1257422, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37849757

RESUMO

Fever and hypothermia represent two opposite strategies for fighting systemic inflammation. Fever results in immune activation; hypothermia is associated with energy conservation. Systemic Inflammatory Response Syndrome (SIRS) remains a significant cause of mortality worldwide. SIRS can lead to a broad spectrum of clinical symptoms but importantly, patients can develop fever or hypothermia. During infection, polymorphonuclear cells (PMNs) such as neutrophils prevent pathogen dissemination through the formation of neutrophil extracellular traps (NETs) that ensnare and kill bacteria. However, when dysregulated, NETs also promote host tissue damage. Herein, we tested the hypothesis that temperature modulates NETs homeostasis in response to infection and inflammation. NETs formation was studied in response to infectious (Escherichia coli, Staphylococcus aureus) and sterile (mitochondria) agents. When compared to body temperature (37°C), NETs formation increased at 40°C; interestingly, the response was stunted at 35°C and 42°C. While CD16+ CD49d+ PMNs represent a small proportion of the neutrophil population, they formed ~45-85% of NETs irrespective of temperature. Temperature increased formyl peptide receptor 1 (FPR1) expression to a differential extent in CD16+ CD49d- vs. CD49d+ PMNSs, suggesting further complexity to neutrophil function in hypo/hyperthermic conditions. The capacity of NETs to induce Toll-like receptor 9 (TLR9)-mediated NF-κB activation was found to be temperature independent. Interestingly, NET degradation was enhanced at higher temperatures, which corresponded with greater plasma DNase activity in response to temperature increase. Collectively, our observations indicate that NETs formation and clearance are enhanced at 40°C whilst temperatures of 35°C and 42°C attenuate this response. Targeting PMN-driven immunity may represent new venues for intervention in pathological inflammation.


Assuntos
Armadilhas Extracelulares , Hipotermia , Humanos , Hipotermia/metabolismo , Hipotermia/patologia , Neutrófilos , Inflamação/metabolismo , Síndrome de Resposta Inflamatória Sistêmica/patologia
11.
Nat Commun ; 14(1): 6344, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816711

RESUMO

Cold stimulation dynamically remodels mitochondria in brown adipose tissue (BAT) to facilitate non-shivering thermogenesis in mammals, but what regulates mitochondrial plasticity is poorly understood. Comparing mitochondrial proteomes in response to cold revealed FAM210A as a cold-inducible mitochondrial inner membrane protein. An adipocyte-specific constitutive knockout of Fam210a (Fam210aAKO) disrupts mitochondrial cristae structure and diminishes the thermogenic activity of BAT, rendering the Fam210aAKO mice vulnerable to lethal hypothermia under acute cold exposure. Induced knockout of Fam210a in adult adipocytes (Fam210aiAKO) does not affect steady-state mitochondrial structure under thermoneutrality, but impairs cold-induced mitochondrial remodeling, leading to progressive loss of cristae and reduction of mitochondrial density. Proteomics reveals an association between FAM210A and OPA1, whose cleavage governs cristae dynamics and mitochondrial remodeling. Mechanistically, FAM210A interacts with mitochondrial protease YME1L and modulates its activity toward OMA1 and OPA1 cleavage. These data establish FAM210A as a key regulator of mitochondrial cristae remodeling in BAT and shed light on the mechanism underlying mitochondrial plasticity in response to cold.


Assuntos
Adipócitos Marrons , Hipotermia , Proteínas Mitocondriais , Animais , Camundongos , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Temperatura Baixa , Hipotermia/metabolismo , Metaloendopeptidases/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Termogênese , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
12.
Nat Commun ; 14(1): 4924, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582782

RESUMO

Thermal homeostasis is vital for mammals and is controlled by brain neurocircuits. Yet, the neural pathways responsible for cold defense regulation are still unclear. Here, we found that a pathway from the lateral parabrachial nucleus (LPB) to the dorsomedial hypothalamus (DMH), which runs parallel to the canonical LPB to preoptic area (POA) pathway, is also crucial for cold defense. Together, these pathways make an equivalent and cumulative contribution, forming a parallel circuit. Specifically, activation of the LPB → DMH pathway induced strong cold-defense responses, including increases in thermogenesis of brown adipose tissue (BAT), muscle shivering, heart rate, and locomotion. Further, we identified somatostatin neurons in the LPB that target DMH to promote BAT thermogenesis. Therefore, we reveal a parallel circuit governing cold defense in mice, which enables resilience to hypothermia and provides a scalable and robust network in heat production, reshaping our understanding of neural circuit regulation of homeostatic behaviors.


Assuntos
Hipotermia , Termogênese , Camundongos , Animais , Termogênese/fisiologia , Área Pré-Óptica/metabolismo , Vias Neurais/fisiologia , Homeostase , Hipotermia/metabolismo , Tecido Adiposo Marrom/metabolismo , Temperatura Baixa , Mamíferos
13.
J Appl Physiol (1985) ; 135(3): 631-641, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37471214

RESUMO

Divers are at enhanced risk of hypothermia, due to the independent action of the inspired inert gases on thermoregulation. Thus, narcosis induced by acute (≤2 h) exposure to either hyperbaric nitrogen or normobaric nitrous oxide (N2O) impairs shivering thermogenesis and accelerates body core cooling. Animal-based studies, however, have indicated that repeated and sustained N2O administration may prevent N2O-evoked hypometabolism. We, therefore, examined the effects of prolonged intermittent exposure to 30% N2O on human thermoeffector plasticity in response to moderate cold. Fourteen men participated in two ∼12-h sessions, during which they performed sequentially three 120-min cold-water immersions (CWIs) in 20°C water, separated by 120-min rewarming. During CWIs, subjects were breathing either normal air or a normoxic gas mixture containing 30% N2O. Rectal and skin temperatures, metabolic heat production (via indirect calorimetry), finger and forearm cutaneous vascular conductance (CVC; laser-Doppler fluxmetry/mean arterial pressure), and thermal sensation and comfort were monitored. N2O aggravated the drop in rectal temperature (P = 0.01), especially during the first (by ∼0.3°C) and third (by ∼0.4°C) CWIs. N2O invariably blunted the cold-induced elevation of metabolic heat production by ∼22%-25% (P < 0.001). During the initial ∼30 min of the first and second CWIs, N2O attenuated the cold-induced drop in finger (P ≤ 0.001), but not in forearm CVC. N2O alleviated the sensation of coldness and thermal discomfort throughout (P < 0.001). Thus, the present results demonstrate that, regardless of the cumulative duration of gas exposure, a subanesthetic dose of N2O depresses human thermoregulatory functions and precipitates the development of hypothermia.NEW & NOTEWORTHY Human thermoeffector plasticity was evaluated in response to prolonged iterative exposure to 30% N2O and moderate cold stress. Regardless of the duration of gas exposure, N2O-induced narcosis impaired in a persistent manner shivering thermogenesis and thermoperception.


Assuntos
Hipotermia , Estupor , Masculino , Animais , Humanos , Óxido Nitroso , Hipotermia/metabolismo , Resposta ao Choque Frio , Regulação da Temperatura Corporal/fisiologia , Termogênese , Tremor por Sensação de Frio/fisiologia , Temperatura Baixa , Água
14.
Neurosci Bull ; 39(12): 1789-1806, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37335428

RESUMO

Brachial plexus avulsion (BPA) is a combined injury involving the central and peripheral nervous systems. Patients with BPA often experience severe neuropathic pain (NP) in the affected limb. NP is insensitive to the existing treatments, which makes it a challenge to researchers and clinicians. Accumulated evidence shows that a BPA-induced pain state is often accompanied by sympathetic nervous dysfunction, which suggests that the excitation state of the sympathetic nervous system is correlated with the existence of NP. However, the mechanism of how somatosensory neural crosstalk with the sympathetic nerve at the peripheral level remains unclear. In this study, through using a novel BPA C7 root avulsion mouse model, we found that the expression of BDNF and its receptor TrκB in the DRGs of the BPA mice increased, and the markers of sympathetic nervous system activity including α1 and α2 adrenergic receptors (α1-AR and α2-AR) also increased after BPA. The phenomenon of superexcitation of the sympathetic nervous system, including hypothermia and edema of the affected extremity, was also observed in BPA mice by using CatWalk gait analysis, an infrared thermometer, and an edema evaluation. Genetic knockdown of BDNF in DRGs not only reversed the mechanical allodynia but also alleviated the hypothermia and edema of the affected extremity in BPA mice. Further, intraperitoneal injection of adrenergic receptor inhibitors decreased neuronal excitability in patch clamp recording and reversed the mechanical allodynia of BPA mice. In another branch experiment, we also found the elevated expression of BDNF, TrκB, TH, α1-AR, and α2-AR in DRG tissues from BPA patients compared with normal human DRGs through western blot and immunohistochemistry. Our results revealed that peripheral BDNF is a key molecule in the regulation of somatosensory-sympathetic coupling in BPA-induced NP. This study also opens a novel analgesic target (BDNF) in the treatment of this pain with fewer complications, which has great potential for clinical transformation.


Assuntos
Plexo Braquial , Hipotermia , Neuralgia , Humanos , Camundongos , Animais , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipotermia/complicações , Hipotermia/metabolismo , Plexo Braquial/lesões , Edema/complicações , Edema/metabolismo
15.
Cryobiology ; 112: 104544, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37211323

RESUMO

Mild hypothermia is proven neuroprotective in clinical practice. While hypothermia leads to the decrease of global protein synthesis rate, it upregulates a small subset of protein including RNA-binding motif protein 3 (RBM3). In this study, we treated mouse neuroblastoma cells (N2a) with mild hypothermia before oxygen-glucose deprivation/reoxygenation (OGD/R) and discovered the decrease of apoptosis rate, down-regulation of apoptosis-associated protein and enhancement of cell viability. Overexpression of RBM3 via plasmid exerted similar effect while silencing RBM3 by siRNAs partially reversed the protective effect exerted by mild hypothermia pretreatment. The protein level of Reticulon 3(RTN3), a downstream gene of RBM3, also increased after mild hypothermia pretreatment. Silencing RTN3 weakened the protective effect of mild hypothermia pretreatment or RBM3 overexpression. Also, the protein level of autophagy gene LC3B increased after OGD/R or RBM3 overexpression while silencing RTN3 decreased this trend. Furthermore, immunofluorescence observed enhanced fluorescence signal of LC3B and RTN3 as well as a large number of overlaps after RBM3 overexpressing. In conclusion, RBM3 plays a cellular protective role by regulating apoptosis and viability via its downstream gene RTN3 in the hypothermia OGD/R cell model and autophagy may participate in it.


Assuntos
Hipotermia , Animais , Camundongos , Apoptose , Criopreservação/métodos , Glucose , Hipotermia/genética , Hipotermia/metabolismo , Oxigênio/metabolismo , Motivos de Ligação ao RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
16.
Physiol Rep ; 11(10): e15681, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37217446

RESUMO

Increased gut permeability is implicated in the initiation and extent of the cytokine inflammatory response associated with exertional heat stroke (EHS). The primary objective of this study was to determine if a five amino acid oral rehydration solution (5AAS), specifically designed for the protection of the gastrointestinal lining, would prolong time to EHS, maintain gut function and dampen the systemic inflammatory response (SIR) measured during EHS recovery. Male C57/BL6J mice instrumented with radiotelemetry were gavaged with 150 µL of 5AAS or H2 O, and ≈12 h later were either exposed to an EHS protocol where mice exercised in a 37.5°C environmental chamber to a self-limiting maximum core temperature (Tc,max) or performed the exercise control (EXC) protocol (25°C). 5AAS pretreatment attenuated hypothermia depth and length (p < 0.005), which are indicators of EHS severity during recovery, without any effect on physical performance or thermoregulatory responses in the heat as determined by percent body weight lost (≈9%), max speed (≈6 m/min), distance (≈700 m), time to Tc,max (≈160 min), thermal area (≈550°C∙min), and Tc,max (42.2°C). EHS groups treated with 5AAS showed a significant decrease in gut transepithelial conductance, decreased paracellular permeability, increased villus height, increased electrolyte absorption and changes in tight junction protein expression pattern suggestive of improved barrier integrity (p < 0.05). No differences were witnessed between EHS groups in acute phase response markers of liver, circulating SIR markers, or indicators of organ damage during recovery. These results suggest that a 5AAS improves Tc regulation during EHS recovery through maintaining mucosal function and integrity.


Assuntos
Golpe de Calor , Hipotermia , Camundongos , Masculino , Animais , Hipotermia/metabolismo , Golpe de Calor/prevenção & controle , Citocinas/metabolismo , Mucosa Intestinal/metabolismo , Aminoácidos/metabolismo
17.
Ther Hypothermia Temp Manag ; 13(3): 134-140, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36862528

RESUMO

Periventricular leukomalacia (PVL), characterized by distinctive form of white matter injury, often arises after neonatal cardiac surgery. Proven therapies for PVL are absent. In this study, we designed to quest therapeutic effects of delayed mild hypothermia on PVL and its mechanism in a neonatal rat brain slice model. With the increase of delayed mild hypothermia-treating time, the reduced expression of myelin basic protein and loss of preoligodendrocytes were significantly attenuated after oxygen-glucose deprivation. In addition, the proportion of ionized calcium binding adapter molecule 1 (Iba-1)-positive cells and the expression of Iba-1 were apparently reduced with the increased duration of mild hypothermia treatment. Furthermore, the levels of tumor necrosis factor alpha and interleukin-6 reduced after the mild hypothermia treatment relative to the control. Inhibition of microglial activation with prolonged mild hypothermia may be a potential strategy for white matter protection during cardiopulmonary bypass and hypothermic circulatory arrest.


Assuntos
Hipotermia Induzida , Hipotermia , Leucomalácia Periventricular , Células Precursoras de Oligodendrócitos , Ratos , Animais , Animais Recém-Nascidos , Células Precursoras de Oligodendrócitos/metabolismo , Células Precursoras de Oligodendrócitos/patologia , Microglia/metabolismo , Microglia/patologia , Hipotermia/metabolismo , Leucomalácia Periventricular/terapia , Leucomalácia Periventricular/metabolismo , Leucomalácia Periventricular/patologia , Encéfalo/patologia
18.
Thromb Res ; 223: 155-167, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36758284

RESUMO

BACKGROUND: Most platelets are present in peripheral blood, but some are stored in the spleen. Because the tissue environments of peripheral blood vessels and the spleen are quite distinct, the properties of platelets present in each may also differ. However, no studies have addressed this difference. We previously reported that hypothermia activates splenic platelets, but not peripheral blood platelets, whose biological significance remains unknown. In this study, we focused on platelet-derived microvesicles (PDMVs) and analyzed their biological significance connected to intrasplenic platelet activation during hypothermia. METHODS: C57Bl/6 mice were placed in an environment of -20 °C, and their rectal temperature was decreased to 15 °C to model hypothermia. Platelets and skeletal muscle tissue were collected and analyzed for their interactions. RESULTS: Transcriptomic changes between splenic and peripheral platelets were greater in hypothermic mice than in normal mice. Electron microscopy and real-time RT-PCR analysis revealed that platelets activated in the spleen by hypothermia internalized transcripts, encoding tissue repairing proteins, into PDMVs and released them into the plasma. Plasma microvesicles from hypothermic mice promoted wound healing in the mouse myoblast cell line C2C12. Skeletal muscles in hypothermic mice were damaged but recovered within 24 h after rewarming. However, splenectomy delayed recovery from skeletal muscle injury after the mice were rewarmed. CONCLUSIONS: These results indicate that PDMVs released from activated platelets in the spleen play an important role in the repair of skeletal muscle damaged by hypothermia.


Assuntos
Plaquetas , Hipotermia , Animais , Camundongos , Plaquetas/metabolismo , Hipotermia/metabolismo , Baço , Ativação Plaquetária , Cicatrização
19.
Neurobiol Dis ; 179: 106042, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36804284

RESUMO

Mild hypothermia has been proven to inhibit microglia activation after TBI. Exosomal microRNA derived from microglia played a critical role in promoting neurite outgrowth and synapse recovery. Here, we aimed to investigate the role of microRNAs in microglial exosomes after hypothermia treatment on neuronal regeneration after TBI. For in vitro study, stretch-injured neurons were co-cultured with microglial exosomes. For in vivo study, C57BL/6 mice were under controlled cortical impact and injected with microglial exosomes. The results showed that MG-LPS-EXOHT increased the number of dendrite branches and total length of dendrites both in vitro and in vivo, elevated the expression levels of PSD-95 and GluR1 in stretch-injured neurons, and increased spine density in the pericontusion region. Moreover, MG-LPS-EXOHT improved motor function and motor coordination. A high-throughput sequencing showed that miR-20b-5p was upregulated in MG-LPS-EXOHT. Elevating miR-20b-5p promoted neurite outgrowth and synapse recovery of injured neurons both in vitro and in vivo. Following mechanistic study demonstrated that miR-20b-5p might promote neurite outgrowth and synapse recovery by directly targeting PTEN and activating PI3K-AKT pathway. In conclusion, mild hypothermia could modify the microRNA prolife of exosomes derived from LPS activated BV2 cells. Furthermore, high level of microglial exosomal miR-20b-5p induced by mild hypothermia could transfer into injured neurons and promote neurite outgrowth and synapse recovery after TBI via activating the PI3K-AKT pathway by suppressing PTEN expression.


Assuntos
Lesões Encefálicas Traumáticas , Hipotermia , MicroRNAs , Camundongos , Animais , Microglia/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Hipotermia/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Lipopolissacarídeos/metabolismo , Camundongos Endogâmicos C57BL , Lesões Encefálicas Traumáticas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Crescimento Neuronal/fisiologia , Sinapses/metabolismo
20.
Cells ; 12(3)2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36766758

RESUMO

Cardiac arrest (CA) and return of spontaneous circulation (ROSC), a global ischemia and reperfusion event, lead to neuronal damage and/or death in the spinal cord as well as the brain. Hypothermic therapy is reported to protect neurons from damage and improve hindlimb paralysis after resuscitation in a rat model of CA induced by asphyxia. In this study, we investigated roles of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in the lumbar spinal cord protected by therapeutic hypothermia in a rat model of asphyxial CA. Male Sprague-Dawley rats were subjected to seven minutes of asphyxial CA (induced by injection of 2 mg/kg vecuronium bromide) and hypothermia (four hours of cooling, 33 ± 0.5 °C). Survival rate, hindlimb motor function, histopathology, western blotting, and immunohistochemistry were examined at 12, 24, and 48 h after CA/ROSC. The rats of the CA/ROSC and hypothermia-treated groups had an increased survival rate and showed an attenuated hindlimb paralysis and a mild damage/death of motor neurons located in the anterior horn of the lumbar spinal cord compared with those of the CA/ROSC and normothermia-treated groups. In the CA/ROSC and hypothermia-treated groups, expressions of cytoplasmic and nuclear Nrf2 and HO-1 were significantly higher in the anterior horn compared with those of the CA/ROSC and normothermia-treated groups, showing that cytoplasmic and nuclear Nrf2 was expressed in both motor neurons and astrocytes. Moreover, in the CA/ROSC and hypothermia-treated group, interleukin-1ß (IL-1ß, a pro-inflammatory cytokine) expressed in the motor neurons was significantly reduced, and astrocyte damage was apparently attenuated compared with those found in the CA/ROSC and normothermia group. Taken together, our results indicate that hypothermic therapy after CA/ROSC attenuates CA-induced hindlimb paralysis by protecting motor neurons in the lumbar spinal cord via activating the Nrf2/HO-1 signaling pathway and attenuating pro-inflammation and astrocyte damage (reactive astrogliosis).


Assuntos
Parada Cardíaca , Hipotermia Induzida , Hipotermia , Animais , Masculino , Ratos , Astrócitos/metabolismo , Parada Cardíaca/complicações , Parada Cardíaca/terapia , Heme Oxigenase-1/metabolismo , Membro Posterior/metabolismo , Hipotermia/metabolismo , Hipotermia Induzida/métodos , Neurônios Motores/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Paralisia , Ratos Sprague-Dawley , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...